

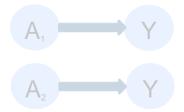
THE CAUSAL EFFECTS OF PSYCHOSOCIAL WELL-BEING AND EMOTION-DRIVEN IMPULSIVENESS ON FOOD CHOICES OF EUROPEAN ADOLESCENTS

Stefanie Do*

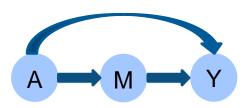
Leibniz Institute for Prevention Research and Epidemiology – BIPS

1st Berlin Applied Causal Graphs Workshop 23 April 2024, Hertie School, Berlin

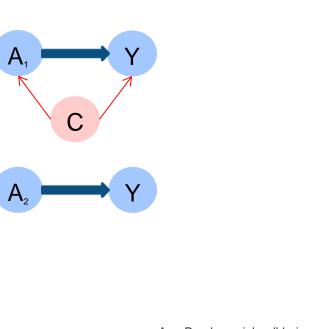
Motivation


- Emotional eating is a maladaptive emotion regulation strategy
- Psychological factors play an important role in food choices
- Emotion-driven impulsiveness: Tendency to act impulsively when experiencing negative emotions:
 - ↑ Unhealthy food choices
- Emotional well-being: A multidimensional composite that encompasses how positive an individual feels generally and about life overall:
 - ↑ Healthy or ↓ unhealthy food choices

Research questions

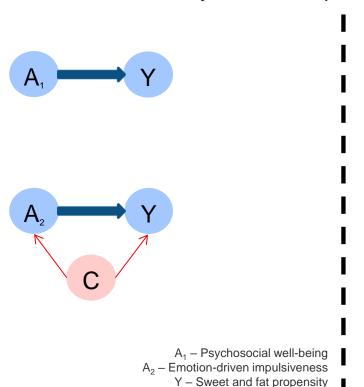

(Q1) Is ↑ psychosocial wellbeing or ↓ emotion-driven impulsiveness more promising to improve food choices?

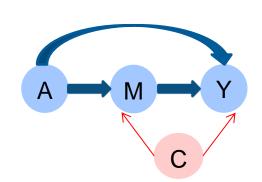
Formally, this question is asking for the separate causal effects of psychosocial wellbeing (A₁) and emotion-driven impulsiveness (A₂) on food choices (Y).


(Q2) How strong (if at all) is the effect of psychosocial well-being on adolescents' food choices mediated by emotion-driven impulsiveness?

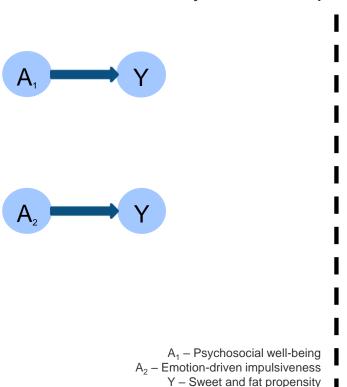
Formally, this question is asking for the direct and indirect effects of psychosocial wellbeing (A) on food choices (Y) mediated by emotion-driven impulsiveness (M).

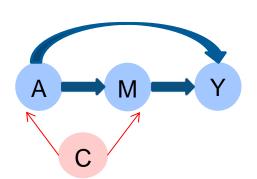
Identify backdoor paths between...



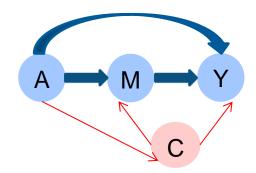


 $\begin{array}{c} A_1 - \text{Psychosocial well-being} \\ A_2 - \text{Emotion-driven impulsiveness} \\ Y - \text{Sweet and fat propensity} \end{array}$


Identify backdoor paths between...



Identify backdoor paths between...



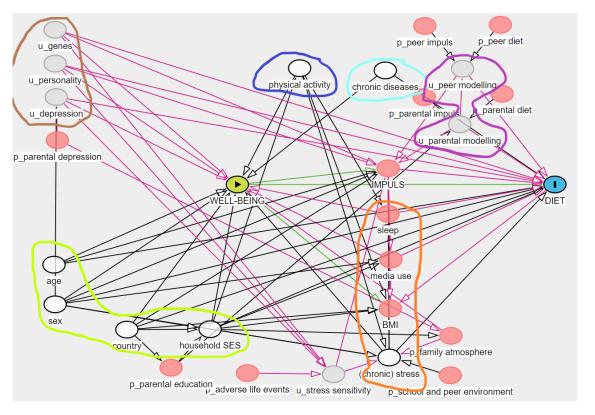
 $\begin{array}{c} A_1 - Psychosocial \ well-being \\ A_2 - Emotion-driven \ impulsiveness \\ Y - Sweet \ and \ fat \ propensity \end{array}$

...& Identify whether exposure affects a mediator-outcome confounding variable

DAG: Where to start?

- 1. Use subject-matter knowledge to identify the influences for the exposure, mediator and outcome variables
 - → Consult experts, use an expert-driven framework
- 2. Establish causal path between each of the variables
 - → Conduct literature search
- 3. Draw main (assumed) causal paths with variables from dataset
- 4. Explore different assumptions

DAG construction: Step 1 & 2

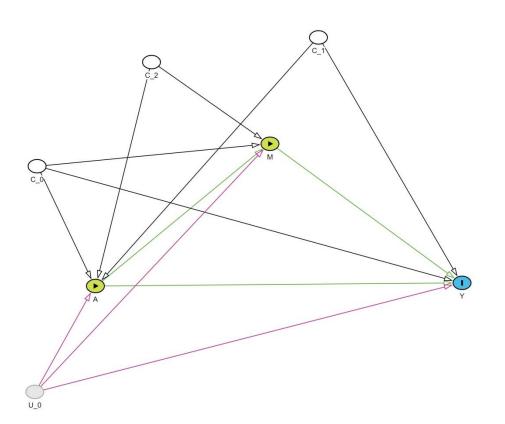


- 1. Check influences on **diet** within the Determinants Of Nutrition and Eating (DONE) Framework¹
 - Apply filter to population of interest: children, school-aged children
 - Apply filter to level of interest: interpersonal, individual level
 - Reduction of determinants: based on prioritization rounds in PEN project²
 - Reconsideration of non-prioritized determinants based on relationship strength as displayed in the DONE Framework Web tool³
 - Exclude determinants that are very specific to diet (e.g. food beliefs, habits, etc.)

DAG construction: Step 1 & 2

- 2. Check determinants for **emotion-driven impulsiveness**
- 3. Check determinants for **psychosocial well-being** if associated with either food choices, emotion-driven impulsiveness or mediator-outcome confounding variable
- 4. Check relationships between **confounding variables**

Exposure-mediator confounding variables
Exposure-outcome confounding variables
Mediator-outcome confounding variables
Exposure-mediator-outcome confounding variables
"contextual" confounding variables
Unmeasured without proxy (exception: depression)


IDEFICS / I.Family Cohort

- Prospective multicenter study across 8
 EU countries
- 4 Waves: 07/08, 09/10, 13/14, 20/21
- Analysis group after inclusion and exclusion criteria:
 - \rightarrow N = 2,065

Variables	Scale
Sweet propensity	Continuous
Fat propensity	Continuous
Emotion-driven impulsiveness	Continuous
Psychosocial well-being	Continuous
Age	Continuous
Sex	Binary
Country	Categorical
Highest educational level of parents	Binary
ВМІ	Continuous
Physical activity	Binary
Media use	Continuous
Sleep quality	Continuous

DAG construction: Step 3

Legend
exposure
outcome
 ancestor of exposure
 ancestor of outcome
 ancestor of exposure and outcome
adjusted variable
unobserved (latent)
other variable
- causal path
biasing path

	Abbreviations*		
Α	psychosocial well-being (W3)		
M	emotion-driven impulsiveness (W3)		
Υ	sweet propensity / fat propensity (W3)		
C_0	age (W2), sex (W3), Country (W3), Highest educational level of		
	parents (W2), BMI (W3), physical activity (W2), psychosocial		
	well-being (W2), sweet propensity / fat propensity (W2)		
C_1	media use (W2)		
C_2	sleep quality (W2)		
U_0	E.g. food availability, parental or peer modelling		

- *All covariates (C_0, C_1, C_2) measured at W2 were used in the main analyses except of:
- sex and country (time-fixed, i.e. unlikely to change over time) and
- BMI (assumed to affect psychosocial well-being over a short time period)

DAG construction: Step 4

Different adjustment sets which were explored...

- Health-related confounding variables derived from W3 instead of W2 that are assumed to be associated with psychosocial well-being, i.e., physical activity, sleep quality, and media use
- Sociodemographic confounding variables derived from W3 instead of W2, since a change in age and parental educational level may influence the investigated relationships in a different way

Statistical analyses (in very brief!)

Aim

To estimate the mean difference of sweet or fat propensity that would be observed in the same individuals under hypothetical interventions ↑ psychosocial well-being or ↓ emotion-driven impulsiveness

Statistical analyses (in very brief!)

Causal inference methods

- (Q1): Combines inverse-probability-of treatment weighting with regression adjustment in a data-driven way ("Targeted Maximum Likelihood Estimation")
- (Q2): Relies on a set of flexible models for exposure, mediator, and outcome, which are then combined to obtain the direct and mediated effects using the mediational 'g-formula' ("Causal Mediation Analysis")

- → Both methods rely on strong causal identifiability assumptions
- → Analyses are supplemented by careful & tailored sensitivity analyses

Discussion & Conclusion

Complementing existing evidence with a causal analysis:

Comparing both psychological factors, both have weak effects, but an intervention targeting emotion-driven impulsiveness would be marginally more effective in reducing sweet and fat propensity

- Expert-driven DAG useful to
 - Visualize assumed data generating process
 - Communicate with co-authors about variable selection.
 - Identify sources of bias to guide statistical analyses

Discussion & Conclusion

- Benefits of using causal inference methods:
 - (Q1) TMLE: Offers some degree of protection against model misspecifications (e.g. incorrect functional form)
 - (Q2): CMA: Allows interactions between the exposure and mediator
- → While (Q1) addresses a clear question: where best to intervene; Q2 is unclear what insight it actually gives into anything
 - Causal inference methods (such as TMLE) with "weaker" assumptions were sufficient to answer main research question (Q1)

Thank you!

More details in the publication:
Do et al., Int J Behav Nutr Phys Act 21, 1 (2024).
https://doi.org/10.1186/s12966-023-01551-w

www.leibniz-bips.de/en

Contact Stefanie Do

Leibniz Institute for Prevention Research and Epidemiology – BIPS Achterstraße 30 D-28359 Bremen dostef@leibiz-bips.de

Recent research with application of CI methods in IDEFICS/I.Family Cohort:

Börnhorst et al. (2023).

Hypothetical lifestyle interventions and overweight/obesity incidence

