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Causal Inference for Time Series  
and Applications to Climate 



Correlation in Statistical Inference 

• Pearson correlation coefficient  measures the correlation 
between two random variables X and Y (right)


• Karl Pearson said “Science in no case can demonstrate any 
inherent necessity in a sequence, nor prove with absolute 
certainty that it must be repeated” 


• “.. the idea of causation is extracted by conceptual 
processes from phenomena, it is neither a logical necessity, 
nor an actual experience. We can merely classify things as 
like; we cannot reproduce sameness, but we can only 
measure how relatively like follows relatively like. The wider 
view of the universe sees all phenomena as correlated, but 
not causally related.”  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“A Causality-free Science”

1: Pearson, “Grammar of Science”, 1892
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The Need for a Causal Framework 

• Understanding: Why do I observe what I observe?  
Eg.: Why can I, a human, reliably distinguish images of cats and 
dogs?


• Attribution: Did a certain event take place due to a certain action 
in the past? Would it have been different if a different action been 
chosen?  
Eg: Are extreme climatic events becoming more frequent because 
of anthropogenic contributions? 


• Decision making: What should I do to achieve a certain goal?  
Eg: How can I enhance the cognitive function of a population? 


• Robust prediction and forecasting: Given I observe X, what is Y? 
Predictive systems consistent with the underlying causal structures 
may show a better out-of-distribution generalisation.  
Eg: Will it rain tomorrow? 

Formalising causal queries

Figure sources:

1. Getty

2. CNN, Ahr Valley 2021 floods

3. Tiny-Giant.net

4. Apple weather app



do-experiments are Hard to Do

• Interventions can be unethical 


• Interventions can be impossible or highly 
impractical


• Interventions can be expensive 

Image source: Wikipedia
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Image source: xkcd comics

(The Obligatory xkcd Slide)



Causal Structure Learning
Query: What Can we Do without Prior Assumptions? 

• Given a dataset of samples for five random variables, what can we say about their 
causal relationships?


• We are supplied with conditional independence tests: 
 

 
 

 
 




• What can we say about the causal graph between these variables?

X1 ⊥ X3 |X2 , X1 ⊥ X4 , X1 ⊥ X5

X2 ⊥ X4 , X2 ⊥ X5

X3 ⊥ X5 |X4

Answer: Nothing :/
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Interlude: Reichenbach’s Common Cause Principle1

If two random variables  and  are statistically dependent , then :


1.  X is (possibly indirectly) causing Y , or

2.  Y is (possibly indirectly) causing X, or 

3.  there is a (possibly unobserved) common cause Z that (possibly indirectly) 

causes both X and Y

X Y (X⊥⊥Y )

1: Hans Reichenbach, “The Direction of Time”, 1956 


Z

An intuition to formalise the connection between causality and statistical 
dependence

X Y X Y

X Y

1. 2. 3.

Generally: Statistical dependence    Causal ‘connectedness’: Causal Markov Condition ⟹

Z



d-separation and Causal Markov Condition  

• A vertex X in a graph is said to be d-separate ( ) from another vertex Y given a set of vertices S, 
when a set of conditions concerning all paths from  are satisfied.

⋈
X to Y

A graphical criterion to aid causal inference 

X YXX Y Y

Z Z Z

X ⋈ Y

X ⋈ Y |Z

X ⋈ Y

Chain ColliderConfounder

XX

X ⋈ Y |ZX ⋈ Y |Z

X ⋈ Y

• Causal Markov Condition:  (Causal graph is Markov relative to )


• ‘The underlying causal graphical structure leaves certain (conditional) independencies as imprints in 
the observational distribution.’

X ⋈ Y |Z ⇒ X⊥⊥ Y |Z PX,Y,…

Z1

X Z3Z2

Y

 (Yes)X ⋈ Y |Z2?



Causal Faithfulness Assumption 

• If all the (conditional) independencies implied by the Markov condition are true, and no more, then 
causal faithfulness is said to hold. 


• Causal faithfulness Assumption : 


• Both the causal Markov and causal faithfulness properties state a relationship between a causal 
graph and probability distribution over the same set of variables. 

X⊥⊥ Y |Z ⇒ X ⋈ Y |Z

The other side of the coin

ZX

Y




                                      





Here  are independent noise terms. 


(The ‘:=’ denotes that these are causal assignments, and the set of 
equations together is called a structural causal model)

X := ηX

Y := b ⋅ X + ηY

Z := a ⋅ X + c ⋅ Y + ηZ

ηi ∼ N(0,1)

a

b c

• If , then causal faithfulness is violated. Therefore, we rule out such fine-tuning of causal 
influences from different paths when we assume faithfulness.

a = − b ⋅ c



The PC Algorithm for Causal Graph Discovery

• The PC algorithm  has become the standard example for the success of causal (graph) discovery using 
conditional independence testing. 


• It assumes causal Markov property, faithfulness, no cycles and no hidden common causes

1

1. To discover a causal graph  over variables , start with a 
fully-connected undirected graph G.  


2. Progressively remove edges to get skeleton graph:




For : 
     For      ( adjacencies of ) 
        If  and : Remove  edge


 

3. Orient colliders   
When 


4. Orient as many remaining edges as possible (using orientation rules )


𝒢 X1, …, Xn

p = 0
(Xi, Xj) ∈ X

S ⊂ adj(Xi) or S ⊂ adj(Xj) : adj(X ) := X
Xi ⊥⊥ Xj | S |S | = p Xi − Xj

p = p + 1

Xi − Xj − Xk ⇒ Xi → Xj ← Xk
Xi ⊥⊥ Xk |S and Xj ∉ S

2

1: Spirtes, Glamour, Scheines, “Causation, Prediction and Search”, 2000

2. Meek, “Complete Orientation Rules for Patterns”, ‘95

PC output

Ground Truth 𝒢

= or ( )
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Causal Inference for Time Series 

1: ‘Discovering Causal Relations and Equations from Data’, Camps-Valls et al, 2023

2: ‘Discovery of Extended Summary Graphs in Time Series’, Assaad et al, 2022
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Possible Target Graphs

Full-time Graph

Extended Summary Graph

Summary Graph

• Full-time Graph stretches infinitely into the past and 
the future


• Summary Graph is a finite graph that does not 
retain information about time-lags and time-indices


• Extended Summary Graph goes midway between 
the former two: it is a finite graph which 
distinguishes between lagged and 
contemporaneous links



Causal Inference for Time Series 
Basic tenets of time-series causal graph discovery

• Start with maximum time lag  , 
provided by domain expert or intuition, eg. 

.


• Assuming causal stationarity, the graph of 
interest can be obtained by focusing on the 
window 


• Slide the time window  to 
generate samples for all ’s


• Devise an algorithm to learn causal parents 
of the variables at time  
(rest of the graph by stationarity)


• Time order helps orient all but 
contemporaneous edges 

τmax

τmax = 3

[t, t − τmax]

[t, t − τmax]
Xi

t

… t − τmax + 1 t…

X1

X2

X3

X4
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Causal Inference for Time Series 
PCMCI Algorithm

• Problem: Samples are autocorrelated so 
detection power of links is low and samples 
are non-iid so tests not well-calibrated. 


• Idea: A momentary conditional independence 
(MCI) test, instead of a usual conditional 
independence tests makes samples iid. 
 
Require: Parents of all variables, then 
conduct CI tests.  
 

Step 1: Find superset of lagged parents of 
 using PC algorithm (and tricks to avoid 

unnecessary deletion of links) 

Step 2: Perform MCI test to discover true parents 

X1, …, X4

X1

X2

X3

X4

t-2t -1t

X1

X2

X3

X4

t-2t -1t
Ground Truth 𝒢

“Detecting and quantifying causal associations in large nonlinear time series datasets”, Runge et al, Science, 2019



Challenges of Time Series Causal Discovery for the Earth System 

Source: Runge et al, “Inferring Causation from time series in earth system sciences”, Nature Communications 2019




Challenges of Time Series Causal Discovery for the Earth System

1,3: Detecting and quantifying causal associations in large nonlinear time series datasets, Runge et al, Science, 2019

5: Causal inference for temporal patterns, Domenic-Reiter et al, 2022

5: Causal discovery for time series from multiple datasets with latent contexts, Günther et al, UAI 2023

7: Identifying Linearly-Mixed Causal Representations from Multi-Node Interventions, Bing et al, Clear 2024

8: High-recall causal discovery for autocorrelated time series with latent confounders, Gerhardus et al, Neuritis 2020

10: Discovering contemporaneous and lagged causal relations in autocorrelated nonlinear time series datasets, Runge, UAI 2020

12: Endogenous Regimes and Causal Discovery, Rabel et al, in prep.

13: Non-parametric Conditional Independence Testing for Mixed Continuous-Categorical Variables: A Novel Method and Numerical Evaluation, Popescu et al, 2023

15: Increasing effect sizes of pairwise conditional independence tests between random vectors, Hochsprung et al, UAI 2023

16: Vector causal inference between two groups of variables, Wahl*, Ninad* et al, AAAI 2023

16: Spatiotemporal Causal Effect Estimation, Herman et al, EGU 2024




The Non-Stationarity Problem in ts-Causal Discovery 

• Roughly, stationarity implies that causal mechanisms do not change overtime


• Most causal discovery algorithms for time series assume stationarity 

• Reason for assuming stationarity: In a sliding window approach to generating samples, we need to 
assume that the samples are identically distributed in order to make statistical inferences 
 
 
 

• However, in certain examples, the stationarity assumption becomes unrealistic. Eg. Seasonal variations in 
climate data. 
Moreover, relaxing this assumption might even aid in orienting links .1

1: Huang*, Zhang* et al’20, JMLR 


“Causal relationships that change over time”

Works for X0

Doesn’t work for  X1



Dealing with Non-Stationarity: The CD-NOD Idea1

• The time index is interpreted as a special random variable 


• Pseudo causal sufficiency assumption : Any latent confounder can be written as a smooth 
function of time, i.e., . 


• Then, the source of non-stationarity is the causal variable 


• Problem: Spurious edges:  

• Solution: 1. Consider the union of variables   
                2. Test   to detect non-stationarity 
                3. Test   
                 Yields the correct skeleton graph 
 

C

g(C)

g(C)

Vi ∪ C
Vi ⊥ C
Vi ⊥ Vj |Vk ∪ C

⇒

1: Huang*, Zhang* et al’20, JMLR 

Leveraging changing probability distributions

Example from [1]: When  is latent, causal 
discovery may yield spurious edges 

g(C)



The Multiple Dataset Problem in Causal Discovery  

• Data sets of the same variables can come from different environments/domains/contexts . 
  
Eg. Data for different individuals (in health, econometrics), data from different countries (in sociology, 
macroeconomics). . . 
 
 
 
 

• Given such ‘heterogenous’ data, we can make different kinds of causal queries:


1. What is the causal structure within each data set? 


2. What is the causal structure across data sets? 


3. Given the causal structure of one data set, what (if anything) can we say about the causal 
structure of another data set? 


4. How can we leverage the invariance of certain causal relationships across data sets?  
 

1,2,3,4

1,3

2

4

“Data from multiple environments: boon or bane?”

1: Mooij et al’20, JMLR

2: Bareinboim’16, PNAS

3: Huang*,Zhang* et al’20, JMLR

4. Peters et al’16, JRSS. . . 

Time spent playing video games

 Aggressive behaviour

X :
Y :

A B C D

Example from [1]



Application of the Multiple Dataset Problem

• A catchment is an area of land where water collects when it rains, often bounded by hills.


• The characteristics of catchments are highly heterogeneous (area, slope, etc.).  
Catchment behaviour also depends on regional climate and other meteorological variables. 


• Can we make causal inferences about the causal drivers of catchment behaviour?  
 
 
 

A River Catchment Example

1: “Clustering of causal graphs to explore drivers of river discharge”, Günther et al ’23, Environmental Data Science

2 Wiebke Günther et al.

Figure 1. Geographic overview and distribution of European catchments characteristics. (a) Area, (b)
average elevation, (c) average slope, (d) forest cover..

In recent years, the importance of data driven analysis has been recognized (Peters-Lidard et al.
2017) and catchment classification has also been done using machine learning techniques (Jiang,
Bevacqua, and Zscheischler 2022).

However, we note that the tools of causal inference seem to be under-explored to derive relationships
between meteorological variables that can serve as a foundation for classifying river catchments. Causal
inference algorithms allow, under specific assumptions, to discover and quantify causal relationships
from observational data. Moreover, their outputs are inherently explainable by design. This makes
them especially suitable for the domain of Earth sciences, since here it is often infeasible to conduct
controlled experiments to arrive at causal conclusions (Runge, Bathiany, et al. 2019; Samarasinghe,
Deng, and Ebert-Uphoff 2020; Gnecco et al. 2019).

In our analysis, we investigate the impact of temperature and precipitation on observed discharge
in European catchments. See figure 1 for an overview of the considered catchments and their environ-
mental characteristics. We assume linear relationships between the variables, and employ the PCMCI
framework by Runge, Nowack, et al. 2019, in combination with expert knowledge, to identify causal
relationships. Based on the found causal graphs, we also quantify the causal effect between the variables
based on the path method (Wright 1934) and Pearl’s causal framework (Pearl et al. 2000) follow-
ing Runge, Petoukhov, et al. 2015. Subsequently, we use the estimated causal effects as features for
clustering using the k-means algorithm (Lloyd 1982).

In doing so, we show how methods from causal inference can improve our understanding of
discharge generating mechanisms.

2. Method
We want to explore differences in the causal structure of discharge and its drivers across Europe. Our
method relies on observations from multiple data sets that have been collected at different locations, i.e.
on data that is heterogeneous with respect to the environment by which it is influenced. In our appli-
cation setting, the considered data sets correspond to the catchments, where we observed temperature,
precipitation and discharge. Within each of the " data sets (i.e. catchments), we have # observational
time series, denoted by the vector X< where < is the data set index, for variables that are the same
across data sets. An observation of variable 8 at time point C within data set < is then denoted by - 8,<

C .
To ease notation, we suppress the data set index in the following. Our analysis comprises three main
steps, i.e.

Figure from [1]: An overview of the European catchment characteristics (eg. Area, elevation, etc.)



J(oint)-PCMCI+1

1: “Causal discovery for time series from multiple datasets with latent contexts”, Günther, U.N., Runge’ 23, UAI


Schematic Idea:

Dataset 1

Dataset 2

Time-context variable

A

B C

• Introduce ‘spatial’ and ‘temporal’ context variables 
(Space indicates the data set label dimension, not necessarily 
physical space)


• Generalise DAGs on system variables to the case with 
observed as well as unobserved context variables 
 
 
 
 
 
 

• For the unobserved contexts introduce a ‘dummy’ variable to 
keep track of the time index or the data set label. 
Spatial contexts  Space dummy 
Temporal contexts  Time dummy


• Apply the fixed effect regression idea (from econometrics) to 
de-confound system variables  
(while taking care of faithfulness violations due to determinism)

⇒
⇒

Obs. 
context

Unobs. 
context

System variables






Xd
t := f(PaX(Xd

t ), PaC̃time
(Xd

t ), PaC̃space
(Xd

t ), ηd
t )

C̃time,t := g(PaC̃time
(C̃time,t), ηtime,t)

C̃d
space := h(PaC̃space

(C̃space), ηd
space)



• Causal effect of  is defined as  , where  . 


    Example: 





                                (Linear causal effects can be read off from structural causal model)

X on Y CE(X → Y ) =
∂
∂x

E(Y |do(X = x)) E(X) := ∫ x ⋅ p(x) dx

X := ηX

Y := b ⋅ X + ηY ⟹ CE(X → Y ) = b

Causal Effect Estimation 
“How much does X cause Y?”

Z1

X Z3Z2

Y
Z1

X Y
Z1

Z1

X Z3Z2

Y

1: Works of Pearl, Shpitser etc…

2. Works of Maathuis, Colombo, Perkovic, Henckel, Runge etc…

• Given the causal graph, how to determine the causal effect by statistical methods (i.e. without interventions)?


  Adjustment Set   for  is defined by 


• Many adjustment sets satisfy the defining property (i.e. are unbiased), but which is the optimal set (i.e. has least 
variance)?  Optimal adjustment set theory

⇒ 1 Z CE(X → Y ) P(Y |do(X)) = ∫ P(Y |X, Z)P(Z) dZ

⟹ 2



Causal Effect Estimation in the Climate: Walker Circulation 

• Walker circulation is a model of air flow in the lower atmosphere in the tropics 

•   We focus on clock-wise circulation of falling air masses in the Central Pacific (CPAC), 

westward surface tradewinds in the Western-central pacific (WCPAC), and rising air 
masses in the western Pacific (WPAC).

Causal effect of the CPAC on WPAC can be 
calculated given the optimal adjustment set - Example source: Runge et al, “Causal Inference for Time Series”, Nature Communications 2023


- Jupyter tutorial available on github.com/jakobrunge/tigramite




Other Applications of Time Series Causal Discovery

• Gene knockout experiments


• Flow cytometry data 


• Cohort studies in epidemiology  


• Representation learning in robotics 


• Financial markets

(Clockwise from bottom left)

Image: ‘Causal protein-signaling networks derived from multiparameter single-cell data’, Sachs et al, Science

Image: ‘Do we Become Wiser With Time? On causal equivalence with tiered background knowledge’, Bang et al, UAI 2023

Image: 'Causal Representation Learning for Instantaneous and Temporal Effects’, Lippe et al, ICLR 2023



Thank you!

Urmi.ninad@tu-berlin.de 
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