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Overview

• Part 1: Introduction — what is a (causal) DAG?

• Part 2: Optimal adjustment sets

• Part 3: Expert-driven causal DAG construction
→ Example: IDEFICS/I.Family children’s cohort study — estimating effect(s) of

hypothetical sustained interventions on health-behaviours on BMI/obesity

• Part 4: Data-driven (causal) DAG construction
→ Example: IDEFICS/I.Family — discovering direct and indirect causal paths
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Part 1

What is a (Causal) DAG?
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Aim of Causal Inference

Analyse data for inference on probabilistic behaviour under (hypothetical)
interventions on a ‘system’

Here: aim is to inform decision making
– in medicine, for public health authorities, for doctors, and individuals
– assess risks and benefits of life-style, drugs, preventive measures etc.
– wanted: actionable / policy-relevant analyses

Challenge: for many important research questions / decision problems there are
no, and never will be, RCTs

⇒ must use observational studies or otherwise available data
e.g. cohort data or routinely collected data (such as health claims)
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What is a (Probabilistic) DAG?
aka Bayesian Network, Probabilistic Expert Sytem etc.

• G = (V,E)
vertices/nodes (= variables), directed edges −→, no directed cycles

• Imposes factorisation into factors p(V | pa(V )), V ∈ V, of joint distribution
⇒ implies conditional independencies for every non-edge
... which can be read off by d-separation
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What is a (Causal) DAG?
aka Causal Graph, Causal Diagram, Influence Diagram etc.

• the above + various versions of ‘causal’ semantics / augmentation
• “Causal” if distribution under interventions accurately represented by

truncated factorisation
⇒ edge represents a ‘controlled direct’ causal effect relative to V
⇒ directed paths = causal paths; other open paths are non-causal

• Little known fact: can define and work with locally causal DAGs
– often more plausible as many nodes/variables not intervenable
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What is a (Probabilistic / Causal) DAG?

Important:

• Model restrictions are imposed by
– absence of edges (non-edges) and
– absence of further nodes with ≥ 2 children (non-nodes)

• Edge = possible (direct) causal relation that is not restricted to be null
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DAG Example

Informally:
• nodes represent variables
• non-edges represent conditional

independencies in the underlying joint
distribution
• d-separation to read off all (cond.)

independencies

X1 X2

YA X3

Example:
Y ⊥⊥ (A,X1) | (X2, X3); but X2 6⊥⊥ X3 | Y — aka ‘collider effect’
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Causal DAG Example (ctd)

Informally:
• nodes represent variables
• edges represent direct causal effects
• directed paths represent some causal effects

• backdoor path from A to Y induces association
blocked by {X1} or {X2} or {X1, X2}

X1 X2

YA X3

Example:
p(X1, X2, X3, A, Y | do(A = a)) = p(X1)p(X2 | X1)1(A = a)p(X3 | A)p(Y | X2, X3)
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Causal DAG Example (ctd)

More formally:
• observational distribution factorises as:

p(V) =
∏

V ∈V
p(V | pa(V ))

• interventional distributions factorise as:

for Vi ∈ V:
p(V | do(Vi = vi)) =

∏
V ∈V\Vi

p(V | pa(V ))1(Vi = vi)

X1 X2

YA X3

Example:
p(X1, X2, X3, A, Y | doA = a)) = p(X1)p(X2 | X1)1(A = a)p(X3 | A)p(Y | X2, X3)
Example:
p(X1, X2, X3, A, Y ) = p(X1)p(X2 | X1)p(A | X1)p(X3 | A)p(Y | X2, X3)
Example:
p(X1, X2, X3, A, Y | do(A = a)) = p(X1)p(X2 | X1)1(A = a)p(X3 | A)p(Y | X2, X3)
Example:
p(X1, X2, X3, A, Y | do(A = a)) = p(X1)p(X2 | X1)1(A = a)p(X3 | a)p(Y | X2, X3)
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Use of Causal DAGs

Systematic & transparent way to represent assumed causal structure
• Illustrate or examine possible sources of bias

– e.g., due to bad design or analysis choices
– Typically: expert-driven construction of (partial) DAG

• Identification of causal parameters via graphical characterization
– e.g. explicit justification for choice of adjustment sets
– Popular: backdoor criterion
– Also: e.g. frontdoor criterion (Piccininni et al. 2023 Epidemiology)

Or: DAG itself is object of interest: “causal discovery”
⇒ data-driven construction of DAG(s)



11

Part 2

Optimal Adjustment Sets
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Adjustment Sets

Wanted: causal effect of A on Y
Using identifying functional

E(Y | do(A = ã)) =
∫

E(Y | A = ã,C = c)p(c) dc

• Backdoor criterion: C must be set of (measured) covariates s.t.
– not descendants of A and
– block all backdoor paths
• Note: C is not unique

– often: focus on ‘minimal’ C (Dagitty)
– but: more (and less) efficient choices possible



13

Adjustment Formula

Average causal effect: E(Y | do(A = 1))− E(Y | do(A = 0))

in the example: p(Y | do(A = a)) =
∑
X1

p(Y | X1, A = a)p(X1)

=
∑
X2

p(Y | X2, A = a)p(X2)

=
∑
X1

∑
X2

p(Y | X1, X2, A = a)p(X1, X2)

A valid adjustment set is any set C that satisfies the adjustment formula:

p(Y | do(A = a)) =
∑
C
p(Y | C, A = a)p(C)

All valid adjustment sets can be read off from the causal DAG
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Which Adjustment Set is Best?

If there is more than one valid adjustment set, which one should we choose?

Assumption: The causal DAG represents a linear system with normal errors

Criterion: Smallest asymptotic variance of the OLS estimator

can be considerably relaxed to cover large class
of np-regular estimators: Rotnitzky & Smucler (2020)
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The Forbidden Projection: Motivation

Latent projection Verma & Pearl (1991); Shpitser et al. (2014)
motivation: ‘hide’ latent nodes

L1

A

C

L2 Y

V1 ← L→ V2 becomes V1↔V2

V1 → L→ V2 becomes V1→V2

A Y

C

Forbidden projection
motivation: ‘hide’ forbidden nodes (mediators and descendants of mediators)
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The Forbidden Projection

Forbidden projection
latent projection over mediators between X and Y and over descendants of such
mediators
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The Forbidden Projection

Properties of the forbidden projection: (Witte, Henckel, Maathuis, Didelez, 2020 JMLR)

• forbidden projection is a causal DAG
• forbidden projection represents a linear system with normal errors
• a set C is a valid adjustment set in the forbidden projection if and only if it is a

valid adjustment set in the original graph
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The Optimal Adjustment Set

With G original causal DAG, and GAY forbidden projection wrt. (A, Y ).

Let β̂ya.x be estimated coefficient of A in linear regression of Y on A and X
Denote its asymptotic variance as avar(β̂ya.x).

Define O(A, Y,G) = pa(Y,GAY ).

Key results:
1) O(A, Y,G) is a valid adjustment set.
2) O(A, Y,G) is optimal in the following sense: For any valid adjustment set Z,

avar(β̂ya.o) ≤ avar(β̂ya.z)

(Henckel, Perković, Maathuis, 2019; Witte, Henckel, Maathuis, Didelez, 2020)
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Example: Optimal Adjustment

Sufficient for adjustment: {V2}; but optimal adjustment set is {V2, V4, V7}

Idea: reduce residual variance, increase unexplained exposure variance
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Remarks on Optimal Adjustment

• Duality:
Set pa(A) is least efficient (‘local’ adjustment)
while pa(Y ) (in forbidden projection) is most efficient adjustment set

• In practice:
efficiency usually not the first concern, avoiding bias more important
• But: including strong (pre-exposure) predictors of Y should be considered

• Criterion can be used with expert-constructed DAG or after data-driven
DAG(s) selection — more: later!
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Read More on Selecting Adjustment Sets:
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Part 3

Expert-Driven DAG Construction
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Eliciting a Causal DAG using Expert Knowledge?

• No generally agreed procedure for eliciting / constructing / justifying causal
DAG based on expert knowledge

• Typically: small number of experts (Petersen et al, 2023 AJE)

• who screen (more or less systematically) the literature
• somehow agree (or not) on one DAG
• Danger: confirmation bias
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Issues with Expert-Driven Construction

• Experts uncomfortable with specifying the full DAG
... full DAG not actually required

• Tendency: every ‘known’ association is represented by a directed edge
i.e. direct/indirect & marginal/conditional dependencies not well-represented

• Focus on measured nodes and edges instead of latent nodes and non-edges

• Time-dependent variables are ‘lumped’ together,
e.g. binary indicator for “smoking”
⇒ should at leat represent ‘up-take’ and ‘continuation’ as separate nodes
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Tool to Prompt Relevant Variables

For study protocol to evaluate
effectiveness of screening
mammography wrt breast
cancer mortality in German
screening programme
(Braitmaier& Didelez et al 2022:ClinEpi)
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Sensitivity Analyses

Little known / used:

• When ambiguous / uncertain about individual edges or directions:
⇒ carry out sensitivity analyses

• Compare results for each choice
– either not much difference
– or raises awareness of sensitivity of results to such assumptions
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Example: Cohort Study with Sensitivity Analyses
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IDEFICS/I.Family Cohort Study

• eight European countries, ≈ 16000 children aged 2-9 at start;
• with three waves, 2007 – 2017; n = 5112 in all waves
• information collected on: health behaviours (diet and physical activity),

socioeconomic factors, genetics, medication, peer networks, media
consumption, cardiovascular / metabolic health, subjective well-being
– repeated measures e.g. of BMI, PA etc.
– at single times e.g. taste preferences, puberty stage, smoking etc.

(Ahrens et al., on behalf of the I.Family Consortium, 2017)
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Obesity in Children: Causal Question?

Context: health behaviour and obesity in children (Börnhorst et al, 2023)

Eligible: children (ca. 5 years old), non-obese; using cohort-data (volunteers)
Health behaviours: sleep duration, screen time, sugar drinks, sports club / physical
activity, active transport −→ guidelines (GL) identified from literature
Outcome: 13-year risk of obesity

Estimand (a): population interventional effect
‘Treatment’ arm: ensure behaviours always meet GLs (sustained)
‘Control’ arm: natural behaviour (i.e. no intervention)
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Shift Interventions

Context: health behaviour and obesity in children (Börnhorst et al, 2023)

Eligible: children (ca. 5 years old), non-obese; using cohort-data (volunteers)
Health behaviours: sleep duration, screen time, sugar drinks, sports club / physical
activity, active transport −→ guidelines (GL) identified from literature
Outcome: 13-year risk of obesity

Estimand (b): shift intervention
‘Treatment’ arm: shift behaviours by specific amount towards guidelines

whenever they don’t already meet the GL
‘Control’ arm: natural behaviour (i.e. no intervention)
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Interpretation

Example: health behaviour and obesity in children (Börnhorst et al, 2023)

Estimand (a): population interventional effect

Estimand (b): shift intervention

Note: control arm reflects current behaviour of population;
shift-interventions considered less ‘invasive’ and thus more realistic.

Note also: analysis with parametric g-formula & numerous sensitivity checks
With only three waves, some ‘heroic’ assumptions involved!
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DAG with Cohort Structure

.
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Alternative DAG with Cohort Structure

.
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Results (Main Analysis)

Results

– jointly all hyp. intervention
– in line with (scarce) existing

evidence
– reduction by 5.3 %-points

or relative: 17%
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Detailed Results (Main)
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Detailed Results (Sensitivity)
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Remarks on Data Example

• Single intervention effects only modest, joint intervention slightly more
effective
• Agrees with previous actual intervention studies, e.g. for diet and/or PA
• Implausible effect of SSB may, e.g., be due to reverse causation
• Potential sources of bias:

– waves are few and far apart in time
– measurement error (self-reporting)
– large drop-out (g-formula: forces ‘no drop-out’ analytically)
– social desirability
– heroic assumption of ‘no unmeasured confounding’
• But with g-formula: adequately accounting for time-dependent confounding,

clear interpretation with immediate public-health interpretation
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Part 4

Data-Driven Construction of (Causal) DAG(s)
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Causal Discovery

aka: causal search, (causal) structure learning, (causal) graph estimation,
network inference ...
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Causal Discovery

Actually:
→ need special assumptions → output not a unique DAG,
(faithfulness, causal sufficiency, instead: equivalence class
likelihood, additivity, ...) and: sampling uncertainty??
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Causal Discovery
Caveats

# DAGs for 10 variables > 4× 1018

Number of DAGs superexponential in number of nodes

⇒ cannot evaluate all possible DAGs

There is no free lunch — all methods rely on strong assumptions

More modest:
interpret output as probabilistic DAG; generate some causal hypotheses;
absence of edge still absence of (direct) causation (but for power)

⇒ Consider causal discovery as exploratory data analysis



49

Types of Algorithms
there are very many

(1) Constraint-based
• principle: (conditional) independence⇒ no (direct) causation
• find (conditional) independencies (= constraints) in data
• construct graph to satisfy these constraints, e.g. PC algorithm

(2) Score-based
• define a score for fit between data and causal graph

(often: penalised likelihood-based)
• optimise the score over space of graphs
• includes Bayesian approaches
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Types of Algorithms
there are very many

(3) Exploiting structural asymmetries
• various ‘modelling’ assumption render X −→ Y observationally different from
X ←− Y , e.g. additive errors
• relies on some information-theoretic justification

(4) Reformulation as continuous optimisation problems (‘NOTEARS’, ‘SAM’)
• with smooth acyclicity constraints
• combine with black-box machine learning approaches
• I would say: still work in progress...
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R Packages micd & tpc

Our work
• Combine constraint-based algorithms with multiple imputation or test-wise

deletion for data with missing values
• Modified PC-algorithm for robust and efficient use of temporal (tiered)

back-ground knowledge
• Additional tools for bootstrapping, mixed data types etc.
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Remarks on Data-Driven Approaches

• Can (in principle) be combined with expert knowledge
– ‘Temporal’ PC-algorithm (tPC): robust and efficient use of temporal background

knowledge e.g. cohort studies (Bang & Didelez, 2024 forthcoming)
– black/white-listing of edges (often ad-hoc)
– weights in SAT-solver approaches

• Good solutions to represent sampling uncertainty of DAG(s) still needed
– Can use resampling (bootstrap)
– ... but often only edge-wise uncertainty reported

• Appropriate algorithm? More algorithms than real-data applications...
– Validation on real data requires experimental data – rarely available
– Validation on synthetic data: need neutral comparisons
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Data-Driven Selection, then Estimation?

First find DAG(s), then estimate causal effect(s)?
• IDA (Intervention when the DAG is Absent) algorithm (Maathuis et al., 2010)

• Note: non-uniqueness of DAGs
⇒ non-uniqueness of adjustment sets
⇒ non-uniqueness of estimates

Caveat: same data for both steps⇒ post-selection inference problem
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Application with IDEFICS/I.Family Data
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IDEFICS/I.Family Cohort Study

• eight European countries, ≈ 16000 children aged 2-9 at start;
• with three waves, 2007 – 2017; n = 5112 in all waves
• information collected on: health behaviours (diet and physical activity),

socioeconomic factors, genetics, medication, peer networks, media
consumption, cardiovascular / metabolic health, subjective well-being
– repeated measures e.g. of BMI, PA etc.
– at single times e.g. taste preferences, puberty stage, smoking etc.

(Ahrens et al., on behalf of the I.Family Consortium, 2017)
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Cohort Causal Graph — Analysis

• Methods: PC-algorithm with MI (random forest imputation models), various
sensitivity analyses PC-alg assumes causal sufficiency!

• Efficient use of temporal structure with tPC algorithm
• Apply local and optimal generalised IDA to determine adjustment sets for

interesting exposure and outcome pairs (Witte et al 2020 JMLR)

• Nonparametric estimation (‘double machine learning’) of effects as rough
guide (post-selection-inference issues here) (Kennedy et al., 2017)
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Cohort Causal Graph — Results

https://bips-hb.github.io/ccg-childhood-obesity/
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Cohort Causal Graph — Stability

Based on 100 bootstrap graphs: consider stability of individual (non)edges but
also of specific interesting graphical structures like causal paths

• Of 104 edges, 36 were stable (> 80%) while 50 were instable (≤ 50%)

• All graphs had multiple possibly causal paths from early modifiable
behaviours to later BMI
– youth-healty eating index (YHEI)
– audio-visual media consumption
– sleep-duration
– physical activity

• No graph had a direct edge from early modifiable behaviours to later BMI
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Cohort Causal Graph — Estimating Effects

• Example here:
estimate causal effect of early YHEI (point exposure) on later BMI (2nd FU)
• Non-parametric causal response curves for continuously measured YHEI
• Local adjustment set (least efficient)
• Optimal adjustment sets – non-unique in equivalence class



Exposure: healthy-eating-index (baseline); outcome: BMI at 2nd FU
NP-estimates of average outcome under hypothetical intervention in exposure
for different adjustment sets and 10 multiply imputed datasets
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Conclusions

• Causal questions at the heart of much research, e.g. in epidemiology
⇒ should use transparent formalism and suitable methods

• Causal inference & discovery relies on specific (mostly untestable)
assumptions
⇒ should make those explicit

• Expert-driven construction is transparent with DAGs, but can be unreliable

• Data-driven construction in practice rather unstable
⇒ should incorporate back-ground or (most reliable) expert knowledge

• Validation of expert- / data-driven approaches is usually not possible



Thanks for your attention!

www.leibniz-bips.de/en

Contact
Vanessa Didelez

Leibniz Institute for Prevention Research
and Epidemiology – BIPS

Achterstraße 30
D-28359 Bremen

didelez@leibniz-bips.de
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GeTTCausal !

BIPS Initiative to
... use the GePaRD database

(German health insurance
claims data)

... with Target Trial emulation

... for Causal inference

... to support & improve
health-related decision making

⇒ Joint work with
many collaborators


