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Overview

Part 1: Introduction — what is a (causal) DAG?
Part 2: Optimal adjustment sets

Part 3: Expert-driven causal DAG construction
— Example: IDEFICS/I.Family children’s cohort study — estimating effect(s) of
hypothetical sustained interventions on health-behaviours on BMl/obesity
Part 4: Data-driven (causal) DAG construction
— Example: IDEFICS/I.Family — discovering direct and indirect causal paths




Part 1

What is a (Causal) DAG?
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Aim of Causal Inference

Analyse data for inference on probabilistic behaviour under (hypothetical)
interventions on a ‘systen?’

Here: aim is to inform decision making

— in medicine, for public health authorities, for doctors, and individuals
— assess risks and benefits of life-style, drugs, preventive measures etc.
— wanted: actionable / policy-relevant analyses

Challenge: for many important research questions / decision problems there are
no, and never will be, RCTs

= must use observational studies or otherwise available data
e.g. cohort data or routinely collected data (such as health claims)



What is a (Probabilistic) DAG?

aka Bayesian Network, Probabilistic Expert Sytem etc.

e G=(V,E)
vertices/nodes (= variables), directed edges —, no directed cycles

* Imposes factorisation into factors p(V | pa(V)), V € V, of joint distribution

= implies conditional independencies for every non-edge
... which can be read off by d-separation



What is a (Causal) DAG?

aka Causal Graph, Causal Diagram, Influence Diagram etc.

¢ the above + various versions of ‘causal’ semantics / augmentation

e “Causal” if distribution under interventions accurately represented by
truncated factorisation

= edge represents a ‘controlled direct’ causal effect relative to V
= directed paths = causal paths; other open paths are non-causal

e Little known fact: can define and work with locally causal DAGs
— often more plausible as many nodes/variables not intervenable



What is a (Probabilistic / Causal) DAG?

Important:

® Model restrictions are imposed by
— absence of edges (non-edges) and
— absence of further nodes with > 2 children (non-nodes)

¢ Edge = possible (direct) causal relation that is not restricted to be null



DAG Example

Informally:
® nodes represent variables X —— X

® non-edges represent conditional
independencies in the underlying joint
distribution

® (-separation to read off all (cond.) A X3 Y
independencies

Example:
Y I (A X)) | (X2, X3); but Xo 4 X3 |Y — aka ‘collider effect’



Causal DAG Example (ctd)

8
Informally:
e nodes represent variables X — Xy
e edges represent direct causal effects
e directed paths represent some causal effects
e backdoor path from A to Y induces association A X5 Y

blocked by { X} or { X5} or { X, Xo}



Causal DAG Example (ctd)

More formally: °
e observational distribution factorises as:
p(V) =[] »(V | pa(V)) Xi — X,
Vev
e interventional distributions factorise as: / \
forV; e V: A X3 )
p(V]do(Vi=wv))= [[ »(V|pa(V)L(V;=;)
Vev\V;
Example:

p(X1, X2, X3,AY) = p(X1)p(X2 | X1)p(A | X1)p(X3 | A)p(Y | X2, X3)



Use of Causal DAGs
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Systematic & transparent way to represent assumed causal structure

e [llustrate or examine possible sources of bias
—e.g., due to bad design or analysis choices
— Typically: expert-driven construction of (partial) DAG

¢ |dentification of causal parameters via graphical characterization
— e.g. explicit justification for choice of adjustment sets
— Popular: backdoor criterion
— Also: e.g. frontdoor criterion (Piccininni et al. 2023 Epidemiology)

Or: DAG itself is object of interest: “causal discovery”
= data-driven construction of DAG(s)



Part 2
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Optimal Adjustment Sets
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Adjustment Sets
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Wanted: causal effect of AonY
Using identifying functional

E(Y | do(A = a)) = /E(Y | A=a,C = c)pc)de

e Backdoor criterion: C must be set of (measured) covariates s.t.
— not descendants of A and
— block all backdoor paths
e Note: C is not unique
— often: focus on ‘minimal’ C (Dagitty)
— but: more (and less) efficient choices possible



Adjustment Formula
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Average causal effect: E(Y | do(A=1)) — E(Y | do(A =0))
in the example: p(Y | do(A = a)) = Zp(Y | X1, A =a)p(Xy)

—ZPY\X% = a)p(X2)
—ZmeXl,Xz, — a)p(X1, X2)

A valid adjustment set is any set C that satisfies the adjustment formula:

p(Y |do(A=a)) =) p(Y | C,A=a)p(C)
C

All valid adjustment sets can be read off from the causal DAG



Which Adjustment Set is Best?

14

If there is more than one valid adjustment set, which one should we choose?

Assumption: The causal DAG represents a linear system with normal errors
Criterion: Smallest asymptotic variance of the OLS estimator

can be considerably relaxed to cover large class
of np-regular estimators: Rotnitzky & Smucler (2020)



The Forbidden Projection: Motivation
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Latent projection Verma & Pearl (1991); Shpitser et al. (2014)
motivation: ‘hide’ latent nodes

Li — C Vi < L — V, becomes Vi< 15 C
l \ Vi — L — V> becomes Vi — 14 / \
A—>» L, —>» Y A—Y

Forbidden projection
motivation: ‘hide’ forbidden nodes (mediators and descendants of mediators)



The Forbidden Projection
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Forbidden projection
latent projection over mediators between X and Y and over descendants of such
mediators

D

|




The Forbidden Projection
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Properties of the forbidden projection: (Witte, Henckel, Maathuis, Didelez, 2020 JMLR)

¢ forbidden projection is a causal DAG
¢ forbidden projection represents a linear system with normal errors

e aset Cis a valid adjustment set in the forbidden projection if and only if it is a
valid adjustment set in the original graph



The Optimal Adjustment Set
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With G original causal DAG, and G4Y forbidden projection wrt. (A,Y).

Let (,..x be estimated coefficient of A in linear regression of Y on A and X
Denote its asymptotic variance as avar(fyq.x)-

Define O(A,Y,G) = pa(Y,G4).

Key results:
1) O(A,Y,G) is a valid adjustment set.
2) O(A,Y,G) is optimal in the following sense: For any valid adjustment set Z,

avar(ﬁya,o) < avaT(Bya.z)

(Henckel, Perkovi¢, Maathuis, 2019; Witte, Henckel, Maathuis, Didelez, 2020)



Example: Optimal Adjustment

19

Sulfficient for adjustment: {V4}; but optimal adjustment set is {V5, V4, V7 }

D DX’Y

Wi

Idea: reduce residual variance, increase unexplained exposure variance



Remarks on Optimal Adjustment
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Duality:
Set pa(A) is least efficient (‘local’ adjustment)
while pa(Y") (in forbidden projection) is most efficient adjustment set

In practice:
efficiency usually not the first concern, avoiding bias more important

But: including strong (pre-exposure) predictors of Y should be considered

Criterion can be used with expert-constructed DAG or after data-driven
DAG(s) selection — more: later!



Read More on Selecting Adjustment Sets:
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Part 3
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Expert-Driven DAG Construction

American Journal of

EPIDEMIOLOGY

JOURNAL ARTICLE ACCEPTED MANUSCRIPT
Invited Commentary: Where Do the Causal DAGs Come
From?

Vanessa Didelez &

American Journal of Epidemiology, kwae028, https://doi.org/10.1093/aje/kwae028
Published: 03 April2024  Article history v



Eliciting a Causal DAG using Expert Knowledge?
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e No generally agreed procedure for eliciting / constructing / justifying causal
DAG based on expert knowledge

¢ Typically: small number of experts (Petersen et al, 2023 AJE)
® who screen (more or less systematically) the literature
® somehow agree (or not) on one DAG
® Danger: confirmation bias



Issues with Expert-Driven Construction
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Experts uncomfortable with specifying the full DAG
... full DAG not actually required

Tendency: every ‘known’ association is represented by a directed edge
i.e. direct/indirect & marginal/conditional dependencies not well-represented

Focus on measured nodes and edges instead of /atent nodes and non-edges

Time-dependent variables are ‘lumped’ together,
e.g. binary indicator for “smoking”

= should at leat represent ‘up-take’ and ‘continuation’ as separate nodes



Tool to Prompt Relevant Variables
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For study protocol to evaluate \I|

effectiveness of screening i
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Sensitivity Analyses

Little known / used:

e When ambiguous / uncertain about individual edges or directions:
= carry out sensitivity analyses

e Compare results for each choice
— either not much difference
— or raises awareness of sensitivity of results to such assumptions

33



Example: Cohort Study with Sensitivity Analyses
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Bornhorst et al. Int J Behav Nutr Phys Act  (2023) 20:100 i i
sy doiorg/10.1186/512966.033.015016 international J:nugg}:;fi Sehavt 3;;'

The effects of hypothetical behavioral
interventions on the 13-year incidence
of overweight/obesity in children

and adolescents

C.Bornhorst' D), I. Pigeot'~, S. De Henauw?, A. Formisano®, L. Lissner®, D. Molnar®, L. A. Moreno”®, M. Tornaritis®,

T.Veigebaum °, T. Vrijkotte'", V. Didelez'?!, M. Wolters'* and on behalf of the GrowH! consortium



IDEFICS/I.Family Cohort Study
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\g ideficssiudy ifandily

¢ eight European countries, ~ 16000 children aged 2-9 at start;
e with three waves, 2007 —2017; n = 5112 in all waves

¢ information collected on: health behaviours (diet and physical activity),
socioeconomic factors, genetics, medication, peer networks, media
consumption, cardiovascular / metabolic health, subjective well-being
— repeated measures e.g. of BMI, PA etc.
— at single times e.g. taste preferences, puberty stage, smoking etc.
(Ahrens et al., on behalf of the I.Family Consortium, 2017)



Obesity in Children: Causal Question?
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Context: health behaviour and obesity in children (Bérnhorst et al, 2023)

Eligible: children (ca. 5 years old), non-obese; using cohort-data (volunteers)

Health behaviours: sleep duration, screen time, sugar drinks, sports club / physical
activity, active transport — guidelines (GL) identified from literature

Outcome: 13-year risk of obesity

Estimand (a): population interventional effect
‘Treatment’ arm: ensure behaviours always meet GLs (sustained)
‘Control’ arm: natural behaviour (i.e. no intervention)



Shift Interventions
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Context: health behaviour and obesity in children (Bérnhorst et al, 2023)

Eligible: children (ca. 5 years old), non-obese; using cohort-data (volunteers)

Health behaviours: sleep duration, screen time, sugar drinks, sports club / physical
activity, active transport — guidelines (GL) identified from literature

Outcome: 13-year risk of obesity

Estimand (b): shift intervention

‘Treatment’ arm: shift behaviours by specific amount towards guidelines
whenever they don’t already meet the GL

‘Control’ arm: natural behaviour (i.e. no intervention)



Interpretation
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Example: health behaviour and obesity in children (Bérnhorst et al, 2023)

Estimand (a): population interventional effect

Estimand (b): shift intervention

Note: control arm reflects current behaviour of population;
shift-interventions considered less ‘invasive’ and thus more realistic.

Note also: analysis with parametric g-formula & numerous sensitivity checks
With only three waves, some ‘heroic’ assumptions involved!



DAG with Cohort Structure
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Main model allowing contemporaneous effects

)

I~
-, /nglvz

Ow/0B.W2

Exposure W3



Alternative DAG with Cohort Structure
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Sensitivity analysis: only time-delayed effects

- ©

OW/0B.W2 Ow/0B_W3




Results (Main Analysis)
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Results
— jointly all hyp. intervention B o Newraloouse
. . . T «++ Observed .
—in line with (scarce) existing 2 =
evidence

25

— reduction by 5.3 %-points
or relative: 17%

20

|‘5

13-y risks of OW/OB:
30.7% under no intervention
25.4% under jointintervention
-> Reduction by 5.3 percentage points

Risk of overweight/obesity (%)
10

-> Relative reduction of OW/OB risk
by 17%

5

6 8
Time since baseline (years)



Interventions

Detailed Results (Main)

13-year risk difference for overweight/obesity

1a: Meet screen time recommendations | @ percent e 42
intervened
1b: Reduce screen time by 0.5 h/d on: 75% o
@ percent
2: Member in sports club - intervened |——e——
on: 32%
3: Use active form of transport - —e—
4a: Meet sleep recommendations | [mal
4b: Increase sleep by 0.5 h/d | e
@ percent
5: Non-daily eating with distractions - intervened |——e¢——|
on: 28%
6a: Drink max 4 SSB/week - @ percent —e—
intervened
6b: Reduce SSB by 1/d -| on: 93% ——
7: Interventions 1a, 2, 3,4a, 5and 6a-{ | . g |
T T T T T

-8 -6 -4 -2 0 2



Detailed Results (Sensitivity)

13-year risk difference for overweight/obesity - allowing only time-delayed effects

1a: Meet screen time recommendations | —e— 43
Effects similar for
1b: Reduce screen time by 0.5 h/d | . o
4 screentime
2: Member in sports club | —e—
3: Use active form of transport | —e——
2 Other effects
.g 4a: Meet sleep recommendations | smaller/ no more
9 significant
1] 4b: Increase sleep by 0.5 h/d |
[=4
5: Non-daily eating with distractions | —e—
6a: Drink max 4 SSB/week | —o—
6b: Reduce SSB by 1/d - o
7: Interventions 1a, 2, 3, 4a, 5 and 6a - | * |
T T T T T
-8 6 -4 2 0 2



Remarks on Data Example
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Single intervention effects only modest, joint intervention slightly more
effective

Agrees with previous actual intervention studies, e.g. for diet and/or PA
Implausible effect of SSB may, e.g., be due to reverse causation

Potential sources of bias:

— waves are few and far apart in time

— measurement error (self-reporting)

— large drop-out (g-formula: forces ‘no drop-out’ analytically)
— social desirability

— heroic assumption of ‘no unmeasured confounding’

But with g-formula: adequately accounting for time-dependent confounding,
clear interpretation with immediate public-health interpretation



Part 4
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Data-Driven Construction of (Causal) DAG(s)
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Causal Discovery
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aka: causal search, (causal) structure learning, (causal) graph estimation,
network inference ...



Causal Discovery
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Input: data Output: causal DAG

A B C z A D

0312 0 ... 140

0213 0 287 |Cousaldiecowery / / e

0721 1 876 /

06 10 0 326

Actually:

— need special assumptions — output not a unique DAG,
(faithfulness, causal sufficiency, instead: equivalence class

likelihood, additivity, ...) and: sampling uncertainty??



Causal Discovery
Caveats
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# DAGs for 10 variables > 4 x 10'®
Number of DAGs superexponential in number of nodes

= cannot evaluate all possible DAGs
There is no free lunch — all methods rely on strong assumptions

More modest:
interpret output as probabilistic DAG; generate some causal hypotheses;
absence of edge still absence of (direct) causation (but for power)

= Consider causal discovery as exploratory data analysis



Types of Algorithms

there are very many
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(1) Constraint-based
¢ principle: (conditional) independence =- no (direct) causation
¢ find (conditional) independencies (= constraints) in data
e construct graph to satisfy these constraints, e.g. PC algorithm

(2) Score-based

¢ define a score for fit between data and causal graph
(often: penalised likelihood-based)

¢ optimise the score over space of graphs
¢ includes Bayesian approaches



Types of Algorithms

there are very many

50

(3) Exploiting structural asymmetries

e various ‘modelling’ assumption render X — Y observationally different from
X +— Y, e.g. additive errors

¢ relies on some information-theoretic justification

(4) Reformulation as continuous optimisation problems (‘NOTEARS’, ‘SAM’)
e with smooth acyclicity constraints
® combine with black-box machine learning approaches
* [ would say: still work in progress...



R Packages micd & tpc
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Our work

e Combine constraint-based algorithms with multiple imputation or test-wise
deletion for data with missing values

¢ Modified PC-algorithm for robust and efficient use of temporal (tiered)
back-ground knowledge

e Additional tools for bootstrapping, mixed data types etc.



Remarks on Data-Driven Approaches
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e Can (in principle) be combined with expert knowledge
— ‘Temporal’ PC-algorithm (tPC): robust and efficient use of temporal background
knowledge e.g. cohort studies (Bang & Didelez, 2024 forthcoming)
— black/white-listing of edges (often ad-hoc)
— weights in SAT-solver approaches

e Good solutions to represent sampling uncertainty of DAG(s) still needed
— Can use resampling (bootstrap)
— ... but often only edge-wise uncertainty reported

e Appropriate algorithm? More algorithms than real-data applications...
— Validation on real data requires experimental data — rarely available
— Validation on synthetic data: need neutral comparisons



Data-Driven Selection, then Estimation?

First find DAG(s), then estimate causal effect(s)?
¢ |IDA (Intervention when the DAG is Absent) algorithm (Maathuis et al., 2010)

¢ Note: non-uniqueness of DAGs
= non-uniqueness of adjustment sets
= non-unigueness of estimates

Caveat: same data for both steps = post-selection inference problem
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Application with IDEFICS/I.Family Data
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www.nature.com/scientificreports

scientific reports

OPEN A |ongitudinal causal graph analysis
investigating modifiable risk
factors and obesity in a European
cohort of children and adolescents

Ronja Foraita )", Janine Witte'?, Claudia Bérnhorst?, Wencke Gwozdz>*, Valeria Pala®,
LaUrerreissner®, Fabio Lauria’, Lucia A. Reisch*®, Dénes Molnar®, Stefaan De Henauw??,
Luis Moreno™, Toomas Veidebaum??, Michael Tornaritis*, Iris Pigeot*? & Vanessa Didelez’?



IDEFICS/I.Family Cohort Study
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\g ideficssiudy ifandily

¢ eight European countries, ~ 16000 children aged 2-9 at start;
e with three waves, 2007 —2017; n = 5112 in all waves

¢ information collected on: health behaviours (diet and physical activity),
socioeconomic factors, genetics, medication, peer networks, media
consumption, cardiovascular / metabolic health, subjective well-being
— repeated measures e.g. of BMI, PA etc.
— at single times e.g. taste preferences, puberty stage, smoking etc.
(Ahrens et al., on behalf of the I.Family Consortium, 2017)



Cohort Causal Graph — Analysis
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figsstcy ifandily

e Methods: PC-algorithm with MI (random forest imputation models), various
sensitivity analyses PC-alg assumes causal sufficiency!

¢ Efficient use of temporal structure with tPC algorithm

¢ Apply local and optimal generalised IDA to determine adjustment sets for
interesting exposure and outcome pairs (Witte et al 2020 JMLR)

e Nonparametric estimation (‘double machine learning’) of effects as rough
guide (post-selection-inference issues here) (Kennedy et al., 2017)



Cohort Causal Graph — Results
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https://bips-hb.github.io/ccg-childhood-obesity/
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Cohort Causal Graph — Stability
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Based on 100 bootstrap graphs: consider stability of individual (non)edges but
also of specific interesting graphical structures like causal paths

e Of 104 edges, 36 were stable (> 80%) while 50 were instable (< 50%)

¢ All graphs had multiple possibly causal paths from early modifiable
behaviours to later BMI
— youth-healty eating index (YHEI)
— audio-visual media consumption
— sleep-duration
— physical activity

¢ No graph had a direct edge from early modifiable behaviours to later BMI



Cohort Causal Graph — Estimating Effects

Example here:
estimate causal effect of early YHEI (point exposure) on later BMI (2nd FU)

Non-parametric causal response curves for continuously measured YHEI
Local adjustment set (least efficient)
Optimal adjustment sets — non-unique in equivalence class
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Exposure: healthy-eating-index (baseline); outcome: BMI at 2nd FU
NP-estimates of average outcome under hypothetical intervention in exposure
for different adjustment sets and 10 multiply imputed datasets

10= 10+ D=
0e D= oe
local B
optimal
08 06~ o8
B
o4 o4 o4
4 L] o 1 0 4 0‘3 == 0 o a BO 10
1 10 10
0&- D&- - nE-
optimal optimal
(1.3 (1.3 [
o4 o4 o4

20 a0 @ &0 100 o 4 & & 100 E a & &0 100
Inbervintion on YHEI [%] at level X = x Intereintion on YHE [%] at level ¥ =x Intervention an YHE| [%] at lewel X =x



Conclusions

Causal questions at the heart of much research, e.g. in epidemiology
= should use transparent formalism and suitable methods

Causal inference & discovery relies on specific (mostly untestable)
assumptions

= should make those explicit
Expert-driven construction is transparent with DAGs, but can be unreliable

Data-driven construction in practice rather unstable
= should incorporate back-ground or (most reliable) expert knowledge

Validation of expert- / data-driven approaches is usually not possible
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Thanks for your attention!
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GeTTCausal !

BIPS Initiative to

use the GePaRD database
(German health insurance

claims data)
with Target Trial emulation
for Causal inference

to support & improve
health-related decision making

= Joint work with
many collaborators
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sl Leibniz Institute
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Working Group Physical
Activity Research
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& Target Trials for
Causal Inference

ere: Research p: g Group & Target

Working Group GePaRD & Target Trials for Causal
Inference (GeTTCausal)

Many research questions in epidemiology can only be answered using
observational data because randomized controlled trials would be

or ethically il ible, e.g. when i igating long-term ef-
fects or vulnerable subpopulations. However, analyses of observational
data can yield highly misleading results if conducted in a way that vio-
lates basic principles of study design, as illustrated by the so-called
HRT story (Hernan et al 2008 Epidemiology 19:766).




