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“When we understand that slide, we’ll have won the war” (General Stanley McChrystal, 2009)



THE ADMINISTRATIVE DATA DAG 2
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Realization: Race bias in policing

> Race (R), Behaviour (B), Animosity (A)
> Stopped (S), Quantified in a report (Q)
> Force applied (F)

Knox, Lowe and Mummolo, 2020



THE ADMINISTRATIVE DATA DAG, AGAIN 3
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Realization: Bicycle helmets and accidents

> Helmet (R), Behaviour (B), Traffic (A)
> Accident (S), Quantified in a hospital report (Q)
> Head injury (F)

e.g. Fernandez et al. 2024
“If I have an accident I’ll wish I had been
wearing an SUV”



“NOT ALL DISCIPLINES LOVE CAUSAL GRAPHS”



THERE ARE TWO TYPES OF CAUSAL PEOPLE 5

Row people

Estimand focused

Focus on averages of contrasts over populations, e.g.

ATE = E[∆Y]

= E[Y(X=1) − Y(X=0)]

= E[Y(X=1)] − E[Y(X=0)]

Extensional formalism

Lay out all the possibilities as potential outcomes
and assert independence relations among them, e.g.

X ⊥⊥ (Y(X=1),Y(X=0))

X G Y(X=1) Y(X=0) ∆Y

1 M Y1 ?
1 F Y2 ?? ?
⋮ ⋮ ?
1 F Yk ?
0 M Yk+1 ?
0 F Yk+2 ?
0 F ?? Yk+3 ?
0 M YN ?

Identification: when you can remove
the counterfactual quantities
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THERE ARE TWO TYPES OF CAUSAL PEOPLE 6

Column people

Mechanism focused

Isolate the association from paths of interest

X

G

Y

єX єY

єG

X

G

Y

єX єY

єG

pre-intervention post-intervention

e.g. what would XÐ→Y be if G ⊥⊥ X?

Intensional formalism

Pre-intervention

X = fX(G, єX)
X = fX(єX)
Y = fY(X ,G, єY)

Post-intervention (X ⇒ 1)

X = 1
G = fG(єG)
Y = fY(1,G, єY)

Identification: when you can learn about
post world from pre world
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OK, MAYBE THREE 7

Single world intervention graph

єX

X Y(X=1)

єY

1

G єG

From the SWIG

X /⊥⊥ Y(X=1) (G is a common cause)

X ⊥⊥ Y(X=1) ∣ G (d-separation)

Richardson and Robins (2013)



GRAPH FOUNDATIONS



THE WORLD MAY BE A COMPLICATED PLACE 9

Often we assume probability and wonder about
causation. Let’s do the reverse

X

A

B

C
Y

K

L

M

G
H I

Q R S

Focus

If we’re interested in XÐ→Y , not all of it is
relevant

Bundle ancestors with no common causes
into ‘noise’ terms єX , єG , єY

X

єX

Y

єY
G

єG

[єX , єG , єY] picks out individuals
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. . .BUT IT IS MADE UP OF MECHANISMS 10

X

єX

Y

єY
G

єG

is a summary of structural equations

G = fG(єG)
X = fX(G, єX)
Y = fY(X ,G, єY)

Nature knows the details. The graph just
shows her joints

Observable implications

Structural equations plus [єX , єG , єY]

> induce a joint probability distribution
> with a causal decomposition

P(Y , X ,G) = P(G)P(X ∣ G)P(Y ∣ G, X)

> that reflects behaviour under interventions
> and has a (sometimes) distinctive conditional

independence structure
> that connects it to data
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CONNECTING PROBABILITIES AND GRAPHS 12

independence⇐⇒ d-separation

Causal Markov Condition

> All variables that are d-separated in the
graph are independent of each other

Faithfulness

> All variables that are independent of
each other are d-separated in the graph
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PATHS OF FREE ASSOCIATION 13

X

G

Y

common cause, fork

Implications

X /⊥⊥ Y
X ⊥⊥ Y ∣ G

Conditioning on G removes
association

X

G

Y

mediator

Implications

X /⊥⊥ Y
X ⊥⊥ Y ∣ G

Same here. Which might be
unfortunate

X

G

Y

collider, common effect

Implications

X ⊥⊥ Y
X /⊥⊥ Y ∣ G

Terrible, non-intuitive, and all
the good stuff is here
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THE GOOD STUFF
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a regression model, from low orbit
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INVISIBLE COLLIDER BIAS 16

no collider bias

X Y
M

єYєX

collider bias

X Y
M

єYєX

in plane language: survival bias

Not actually Wald’s problem or plane, but
hey. . . (Mangel & Samaniego, 1984)
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ALL COLLIDER BIAS ALL THE TIME 17

No really, all of it

> Elwert and Winship (2014)
> Hernán et al. (2004)

usually it’s the problem. . .

> Non-response
> overcontrol
> attrition
> selection on the dependent variable
> survival bias
> latent homophily



COLLIDER BIAS AND ‘BIAS’



I FOUGHT THE LAW 19
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A B

R. Fryer (2018) ‘An empirical analysis of racial
differences in police use of force’

H. Mac Donald (2020) Wall Street Journal
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ACAB (ALL COLLIDERS ARE BIASING)? 20

R
S

Q
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A B

R. Fryer (2018) ‘An empirical analysis of racial
differences in police use of force’

i got ninety nine problems. . .

> This is a mediation problem
> But on a subset of the population

because Q is a selection node
> Police records are implicitly conditioned on S
> Collider bias between R, A, B
> Estimands are rather unclear

and those were just six of them

Equal observed rates of force by race imply
strongly biased policing

Knox, Lowe and Mummolo, 2020
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COLLIDER BIAS FOR GOOD



COLLIDER BIAS FOR GOOD: MATCHING 22

X

G

Y

M

єX єY

єG

The matching mechanism

M = f(X ,G)

Exact one-to-one matching for the ATT:

> For every Xi =1 look for an X j=0 with G j=Gi

> If you find one, set Mi and M j to 1, else 0

X

G

Y

M=1

єX єY

єG

The matching process

Condition on M by removing all cases
where M = 0

G ⊥⊥ X ∣ M = 1

See Mansournia et al. (2013) for the
case-control version
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COLLIDER BIAS FOR GOOD: PROPENSITY SCORES 23

p
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Known propensity scores

Condition on them to close

X ←Ð G Ð→ Y

“p is a balancing score” just means

G ⊥⊥ X ∣ p

X

G

Y

p̂

єX єY
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Estimated propensity scores

The propensity score estimator

p̂ = f(X ,G)

Condition on p̂ for collider bias that cancels

X ←Ð G
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COLLIDER BIAS FOR GOOD: MUNDLAK DEVICE 24

E[X ∣ G]

X
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Y
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frisch-waugh-lovell

Intuition:

> Removing G’s influence on X isolates єX
> General, but path blocking depends on

functional details

X

G

Y

XG

єX єY

єG

mundlak device

When G is a group, it moves E[X ∣ G] ≈ XG

> Mundlak: Safely give G a random effect
> BW: Estimate contextual effects from

X = (X − XG)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

єX

+XG
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BUT ENOUGH OF THE GOOD NEWS



CANCEL CULTURE 26
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In a linear system, αγ − β = 0means X ⊥⊥ Y



MEASUREMENT FAILURE 27

Whenever a government seeks to rely on a
previously observed statistical regularity for
control purposes, that regularity will
collapse

(Goodhart, 1981)

The more any quantitative social indicator
is used for social decision-making, the more
subject it will be to corruption pressures and
the more apt it will be to distort and corrupt
the social processes it is intended to monitor.

(Campbell, 1979)

Causal measurement models

X

G

Y

α γ

β

єX єY

єG

> X ability, Y exam results
> G test preparation services

P(Y ∣ X) is an item response function

with differential item functioning at best
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CONTROL MANUFACTURES UNFAITHFULNESS 28

X
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α
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S
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єY

A parametric example from Shalizi (2021)

X = єX
G = α0 + XαX + єG
Y = (X −G) + єY

(So β = 1 and γ = −1)

Milton Friedman’s thermostat

> X is outdoor temperature
> Y is indoor temperature
> G is the effect of the central heating system
> Y∗ is the desired indoor temperature

In equilibrium (Y = Y∗) αX = 1 and α0 = −Y∗

> X ⊥⊥ Y
> G /⊥⊥ X
> G /⊥⊥ Y , but the better control is, the closer it

gets to independent

Only out of equilibrium can we ‘see’ the graph
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EFFECTIVE CONTROL LOOKS LIKE. . .NOTHING 29



RESEARCHERS RANDOMIZE – PEOPLE OPTIMIZE 30

> Efficient market structures
> Regulation to offset negative outcomes
> Feedback control

The causal graph is timescale specific
(Weinberger, 2020)

“Nana Otafrija Pallbearing & Waiting Services have
evaluated your randomized controlled trial on
behalf of West Africa”



NEW DIRECTIONS 31

A fundamental tension

Researchers randomize. People optimize, strategize, and
generally create order.

ok, but what about other directions?

Causal accounts of

> measurement models
> hierarchical data structure
> mediation (no really)
> machine learning

And whatever else we come up with on a chilly Tuesday
in Alex
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